
Journal of Computational Physics 228 (2009) 6250–6267
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Performance of a parallel algebraic multilevel preconditioner
for stabilized finite element semiconductor device modeling q

Paul T. Lin a,*, John N. Shadid a, Marzio Sala b, Raymond S. Tuminaro c, Gary L. Hennigan a,
Robert J. Hoekstra a

a Sandia National Laboratories, P.O. Box 5800 MS 0316, Albuquerque, NM 87185-0316, USA
b BMW-Sauber, Hinwil, Switzerland
c Sandia National Laboratories, P.O. Box 969 MS 9159, Livermore, CA 94551-9159, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 1 November 2008
Received in revised form 15 April 2009
Accepted 12 May 2009
Available online 21 May 2009

Keywords:
Multilevel preconditioners
Multigrid
Nonsmoothed aggregation
Newton–Krylov
Schwarz domain decomposition
Graph partitioning
Drift-diffusion
Semiconductor devices
Finite element
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.05.024

q Partially supported by the DOE NNSA ASC progra
Sandia is a multiprogram laboratory operated by Sa
Nuclear Security Administration under contract DE-

* Corresponding author.
E-mail address: ptlin@sandia.gov (P.T. Lin).
In this study results are presented for the large-scale parallel performance of an algebraic
multilevel preconditioner for solution of the drift-diffusion model for semiconductor
devices. The preconditioner is the key numerical procedure determining the robustness,
efficiency and scalability of the fully-coupled Newton–Krylov based, nonlinear solution
method that is employed for this system of equations. The coupled system is comprised
of a source term dominated Poisson equation for the electric potential, and two convec-
tion–diffusion-reaction type equations for the electron and hole concentration. The gov-
erning PDEs are discretized in space by a stabilized finite element method. Solution of
the discrete system is obtained through a fully-implicit time integrator, a fully-coupled
Newton-based nonlinear solver, and a restarted GMRES Krylov linear system solver. The
algebraic multilevel preconditioner is based on an aggressive coarsening graph partitioning
of the nonzero block structure of the Jacobian matrix. Representative performance results
are presented for various choices of multigrid V-cycles and W-cycles and parameter vari-
ations for smoothers based on incomplete factorizations. Parallel scalability results are pre-
sented for solution of up to 108 unknowns on 4096 processors of a Cray XT3/4 and an IBM
POWER eServer system.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The predictive computational modeling of advanced semiconductor devices for science and technology applications re-
quires high resolution simulations. A base computational method for these devices is the drift-diffusion model [1,2]. This
coupled system of nonlinear partial differential equations (PDEs) relate the electric potential to the electron and hole con-
centrations in these devices. The most common discretization approach for these equations is based on a finite volume (FV)
method along with the Scharfetter–Gummel upwinding technique [1–3]. This approach applies an analytically derived, lim-
iting case, one-dimensional solution to produce an exponential type of upwinding at each face of the FV cell. The resulting
nonlinear algebraic system of equations is then commonly linearized by a nonlinear block Gauss–Seidel iteration (commonly
referred to as Gummel’s method) [4–7] or by a fully-coupled Newton type method [5,6,8,9], resulting in the generation of
. All rights reserved.

m and the DOE Office of Science ASCR Applied Math Research program at Sandia National Laboratory.
ndia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National
AC04-94AL85000.

mailto:ptlin@sandia.gov
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


P.T. Lin et al. / Journal of Computational Physics 228 (2009) 6250–6267 6251
large, sparse linear systems. As a result efficient and robust parallel iterative solution methods are required to make such
simulations tractable for large-scale problems. Currently preconditioned Krylov iterative methods are among the most ro-
bust and fastest iterative solvers over a wide range of applications (see Ref. [10] as well as its list of references). For these
methods the preconditioner is the key numerical procedure influencing the robustness, efficiency and scalability of the linear
solution.

The focus of this study is the initial evaluation of a recently developed fully-coupled algebraic multilevel preconditioning
method [11–14] in the context of the drift-diffusion system. This fully-coupled preconditioner is based on aggregation tech-
niques [15,16]. The aggregation technique is based on a sparse graph with connectivity and vertices defined by the nonzero
block structure of the discrete approximation to the Jacobian. This graph therefore roughly corresponds to the mesh node
connectivity of the underlying mesh of the discretization. An automated graph-based partitioning tool [17,18] is then applied
to form subgraph partitions that aggregate a target number of vertices into a each aggregate. With a suitable choice of inter-
polation operator on the coarse aggregate a grid transfer operator can be defined. These grid transfer operators can then be
used to produce approximate coarse operators through projection techniques and thereby enable the development of mul-
tilevel algebraic preconditioning methods.

Previous work that has considered the multilevel solution of the drift-diffusion system has included geometrically based
multigrid methods applied to FV discretizations [7,19], geometrically based multigrid methods applied to finite element (FE)
discretizations [9,20] and algebraic multigrid methods applied to FV discretizations [8]. In this study, the initial evaluation of
the algebraic multilevel preconditioner for two-dimensional drift-diffusion systems is carried out in the context of a partic-
ular unstructured stabilized finite element discretization as described in Section 3. A FV Scharfetter–Gummel technique is
currently under development, and a future study will evaluate the performance of the multilevel preconditioner on this dis-
cretization technique.

The remainder of the paper is structured as follows. In Section 2 the drift-diffusion equations are presented. Section 3
then presents the stabilized finite element formulation for this system. In Section 4 a very brief overview of the precondi-
tioned Newton–Krylov solver is presented followed by a discussion in Section 5 of the graph-based fully-coupled multilevel
preconditioner. The results of a set of numerical studies are presented in Section 6. These studies consider the effect of the
key algorithmic parameters: the choice of the aggregate size, the selection of V-cycle vs. W-cycle, the number of multigrid
cycles, the number of relaxation sweeps of the smoothers, and the choice of fill and overlap for the incomplete lower/upper
(ILU) factorization smoother. Weak scaling studies are also presented comparing the one-level domain decomposition (DD)
ILU preconditioner with a three-level multilevel preconditioner.

2. Governing equations for semiconductor device modeling

The equations governing the transport of charge carriers within a semiconductor device can be approximated using the
standard drift-diffusion equations given by [1,2]:
r � ð�EÞ � qðp� nþ CÞ ¼ 0; ð1Þ

q
@n
@t
�r � Jn þ qG ¼ 0; ð2Þ

q
@p
@t
þr � Jp þ qG ¼ 0; ð3Þ
where
E ¼ �rw;

Jn ¼ qnlnEþ qDnrn;

Jp ¼ qplpE� qDprp:
The unknowns are: w, the electrostatic potential, n, the electron concentration (number of electrons per volume), and p, the
hole concentration (number of holes per volume), with �, the permittivity of the semiconductor material, q, the fundamental
electron charge, ln and lp, the electron and hole mobilities, respectively, Dn and Dp, the electron and hole diffusion coeffi-
cients, respectively, C the doping profile, and G the generation/recombination source term.

Typically, (1)–(3) are scaled prior to discretization [1]. The scale factors used to non-dimensionalize this system, in this
study, are given in Table 1. After scaling (1)–(3) the PDEs become in residual form
Rw ¼ �k2r2w� ðp� nþ CÞ ¼ 0; ð4Þ

Rn ¼
@n
@t
þr � ðlnnrwÞ � r � ðDnrnÞ þ G ¼ 0; ð5Þ

Rp ¼
@p
@t
�r � ðlpprwÞ � r � ðDprpÞ þ G ¼ 0; ð6Þ



Table 1
Scaling factors used to non-dimensionalize the semiconductor drift-diffusion equations. Here Lx ; Ly are length scales for a rectangular 2D domain and the
quantity V0 is the thermal voltage [1]. yThe intrinsic electron concentration is used as a scaling parameter. Other choices such as maxðCðxÞÞ over the domain are
also common [1].

Quantity Scaling factor symbol Value of scaling factor

x x0 Maximum length scale: maxðLx ; LyÞ
w V0

kB T
q

n;p; C C0 nyi
Dn;Dp D0 maxðDnðxÞ;DpðxÞÞ
ln;lp l0

D0
V0

G G0
D0C0

x2
0

t t0
x2

0
D0

E E0
V0
x0

Jn; Jp J0
qD0 C0

x0

6252 P.T. Lin et al. / Journal of Computational Physics 228 (2009) 6250–6267
where
k2 ¼ V0�
qx2

0C0
:

k is the minimal Debye length of the device.
In this study these governing PDEs are discretized by a particular stabilized finite element method.

3. Stabilized finite element discretization

In this section a brief description of an initial stabilized finite element discretization of the drift-diffusion system is pro-
vided. This discretization is associated with a simple extension of an SUPG-type approach to the drift-diffusion system with
the inclusion of a nonisotropic discontinuity capturing type term. The stabilized FE weak form is
Fw ¼
Z

X
Rw/dX ¼ 0; ð7Þ

Fn ¼
Z

X
Rn/dX�

X
e

Z
Xe

sn½lnE � r/�RndXþ
Z

X
mðRnÞr/ � bE?rndX ¼ 0; ð8Þ

Fp ¼
Z

X
Rp/dXþ

X
e

Z
Xe

sp½lpE � r/�RpdXþ
Z

X
mðRpÞr/ � bE?rpdX ¼ 0; ð9Þ
where
bE? ¼ I� E� E

kEk2

" #
:

The stabilized FE strategy is used to control instability in the Galerkin FE formulation for the drift-diffusion system. The
terms in the weak form include, the standard Galerkin term (first term in (7)–(9)), an SUPG-type term (second term in
(8) and (9)) and finally a nonisotropic discontinuity capturing (DC) type term (third term in (8) and (9)). This methodology
is based on a variation of the streamline upwind Petrov–Galerkin (SUPG) type FE formulations of Hughes et al. [21,22] and
Shakib [23] for convection–diffusion systems and has similarities to the flux upwind Petrov–Galerkin method for the drift-
diffusion equations of Carey et al. [24,25]. The stabilized FE method allows solution of convection–diffusion type systems by
decreasing numerical oscillations due to convection effects. In addition, this stabilization improves the conditioning of, and
therefore the iterative solution of, the Jacobian matrices in the linear subproblems generated by Newton’s method. The addi-
tion of a nonlinear discontinuity capturing type operator [26,27] also attempts to control oscillations by adding diffusion in
the direction perpendicular to the electric field. A more thorough discussion of stabilized FE methods for the drift-diffusion
system, a new variational multiscale formulation and a comparison with a more standard Scharfetter–Gummel finite volume
approach will be presented in [28].

3.1. Electron and hole stabilization parameters

The simplified stabilized FE formulation presented in this study uses a multidimensional generalization of the optimal
stabilization parameter for solving a one-dimensional convection–diffusion equation with constant coefficients. The stabil-
ization parameters are given by the formula



P.T. Lin et al. / Journal of Computational Physics 228 (2009) 6250–6267 6253
sl ¼
1

ll

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EGcET

p 1
tanhðalÞ

� 1
al

� �
;

where
al ¼
ll

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EGcET

p
DlkGck

;

and l ¼ n; p for electrons and holes respectively. With this choice for ðsn; spÞ and no DC term this method can be shown to be
equivalent to a box integration method using a Scharfetter–Gummel exponential upwinding technique in one dimension
[28] that is considered a standard discretization on regular finite volume meshes [1,2]. The stabilizing terms have the prop-
erty that the true solution also satisfies the weak variational form since the DC coefficients, mn and mp, are either linearly or
quadratically proportional to the PDE residuals [22,23].

The multidimensional effect of convection (i.e. drift) is incorporated into the stability parameters by the use of the con-
travariant metric tensor, Gc , of the transformation from local element coordinates ffag to physical coordinates fxig:
½Gc�ij ¼
@fa

@xi

@fa

@xj
:

Shakib [23] considers the one-dimensional limiting case of this multidimensional definition for the advection–diffusion
equation and presents a comparison with the original SUPG technique.

Finally, it should be noted that this formulation, as presented, has some limitations. First this formulation is a
simplification of proposed formulations for multiple advection–diffusion type equations that also couple the various equa-
tions in the definition of the least squares operators [29]. In addition a full variational multiscale analysis produces additional
terms that affects both the stability and accuracy of these stabilized FE formulations. In [28] we consider various forms and
contrast the stability and robustness of these methods in more detail. Finally, it is noted that in the parallel scaling studies
that are the focus of this paper there is sufficient resolution so that the discontinuity capturing terms above are not
employed.
4. Preconditioned Newton–Krylov method

Discretization of the drift-diffusion equations produces a large sparse, strongly coupled nonlinear system. This system is
solved via a Newton–Krylov algorithm [30,31], where the linear systems (generated at each Newton step) are solved using a
Krylov accelerator [32,33]. The nonlinear iteration is referred to as an inexact Newton–Krylov method when linear systems
are solved inaccurately, which is computationally and theoretically justified during early Newton iterations [34].

Briefly, the convergence of Krylov methods is connected to the linear system condition number. For example, the conver-
gence rate of the conjugate gradient (CG) method for symmetric positive definite problems, Ax ¼ b; can be bounded by
keðkÞkA 6 2
ffiffiffiffi
j
p
� 1ffiffiffiffi

j
p
þ 1

� �k

keð0ÞkA; ð10Þ
where eðkÞ ¼ x� � xðkÞ denotes the error at step k and j is the condition number of the linear system (the ratio of largest to
smallest eigenvalue in the symmetric case). Thus, CG converges rapidly when j � 1. Unfortunately, even for straightforward
equations that are dominated by Laplacian-type operators, j / h�2 where h is the mesh spacing on a uniform mesh. Thus the
error decreases slowly for each iteration for high resolution meshes (i.e. when h� 1). Similar results exist for applying Kry-
lov solvers to nonsymmetric systems (e.g. GMRES) [32].

For the problems considered here, convergence is not achieved without preconditioning [32]. Formally a preconditioner
defines a nonsingular matrix M that approximates the original matrix A and is easily inverted. In the case of right precon-
ditioning the original linear system is transformed to AM�1My ¼ b where AM�1 � I. For the transformed system CG conver-
gence is then bounded by (10) where j is replaced by the condition number of the preconditioned linear system AM�1. Thus,
a preconditioning goal is to reduce the condition number. Ideally, it should be independent of mesh spacing to guarantee that
convergence does not deteriorate as the mesh is refined. Finally, Krylov methods do not require A, or M�1 to be formed. In-
stead, procedures for applying A to a vector and efficient solution methods for Mz ¼ r must be provided.

5. Domain decomposition preconditioners

5.1. One-level additive schwarz methods

Domain decomposition (DD) preconditioners subdivide the computational domain into subdomains, solve the local sub-
domain problems, and then combine subdomain solutions. One DD method is the one-level Schwarz preconditioner [35,36].
To describe the Schwarz method utilized in this paper consider
Ax ¼ b;



6254 P.T. Lin et al. / Journal of Computational Physics 228 (2009) 6250–6267
where A is an n	 n matrix having a symmetric nonzero pattern. Define a graph G ¼ ðV; EÞwhere the vertex set V ¼ f1; . . . ;ng
represents unknowns and the edge set E ¼ fði; jÞ s:t: aij–0g represents vertex pairs coupled by a nonzero element in A. Graph
partitioning is applied resulting in N subsets (or subdomains) V0

i where V0
i

T
V0

j ¼ ;ð8i–jÞ and V ¼
SN

i¼1V0
i . Overlapping sub-

sets are then constructed. Define V1
i as the one-overlap decomposition of V where V1

i 
 V0
i is obtained by including all imme-

diate neighboring vertices to those in V0
i . The d-overlap partition Vd

i is constructed by recursively applying this procedure.
Corresponding to each Vd

i define an nd
i 	 n matrix Rd

i where nd
i ¼ jV

d
i j and j � j denotes cardinality. Rd

i restricts vectors in Rn

toRnd
i by choosing vector entries corresponding to Vd

i . The matrices Ad
i ¼ Rd

i AðRd
i Þ

T are principal submatrices of A. In a parallel
distributed environment each subdomain is assigned to one processor and a Schwarz preconditioner is defined by
ðMd
ASÞ
�1 ¼

XN

i¼1

ðR0
i Þ

TðAd
i Þ
�1Rd

i : ð11Þ
This is somewhat different from the classical additive Schwarz preconditioner which would use ðRd
i Þ

T instead of ðR0
i Þ

T in (11).
The use of Md

AS typically converges a bit faster and avoids one communication step as each unknown is updated by only one
subdomain even within overlapping regions [37,38].

Parallel implementation requires a factorization of a Dirichlet problem on each processor in the setup phase. Due to the
large memory and floating point expense, a direct factorization can be replaced by an ILUðkÞ incomplete factorization [32].
While this typically causes modest deterioration in the convergence rate, CPU time is reduced as each iteration is less expen-
sive. In general, larger overlap leads to faster convergence up to a point where almost no further improvement is observed.
Unfortunately, even slight overlap increases can lead to significant communication and computation requirements. Thus, we
typically restrict d 6 2.

The one-level Schwarz method is not scalable as all information exchange between subdomains only occurs through
overlapping regions while for elliptic problems the domain of dependence is global. The condition number can be bounded
by
jððMd
ASÞ
�1AÞ 6 C

1
Hd

;

(see for instance [39]) where H is the approximate subdomain diameter and C denotes a constant independent of H;h, and d.
The 1=H term implies that the condition number could increase as the number of subdomains increases which is consistent
with an observed rise in the number of Krylov iterations. To rectify this, the preconditioner must incorporate some type of
coarse system.

5.2. Multilevel schwarz

The primary idea of a multilevel Schwarz method is to introduce a coarse subproblem which captures the approximate
coarse scale behavior. This coarse subproblem provides global coupling and can lead to optimal methods, condition numbers
independent of the number of subdomains and either independent or logarithmically dependent on the number of un-
knowns per subdomain. Optimality in terms of cost requires that the coarse grid not be too fine if something like a direct
solver is used to ‘‘solve” the coarse problem. Otherwise, a coarse solution may be approximated with the use of additional
coarse levels. When coarse levels are incorporated, there are strong ties between domain decomposition and multigrid (see
for example [40]).

There is a lack of agreement on the characteristics that separate domain decomposition methods with coarse solves from
multigrid methods. Very rough guidelines to characterize the two approaches are shown in the left side of Fig. 1. We now
briefly review some multigrid concepts.

Multigrid methods utilize multiple resolutions. Generally speaking, oscillatory components are reduced through simple
relaxation such as a Gauss–Seidel iteration. The residual equation is then transferred to a coarse level under the assumption
that the error should now be smooth. The coarse solution is then used to correct the fine level approximation. The idea is
Fig. 1. Left: domain decomposition vs. multigrid. Right: multigrid V-cycle to solve A‘u ¼ b.



P.T. Lin et al. / Journal of Computational Physics 228 (2009) 6250–6267 6255
then applied recursively. Algebraic multigrid (AMG) methods automatically generate coarse levels and level transfer
operators.

Fig. 1 presents a multigrid V-cycle. Here, A1 is the linear system matrix that one is interested in solving. The A‘ define a
hierarchy of different resolutions. P‘ is an interpolation operator that transfers solutions from level ‘þ 1 to level ‘. R‘ restricts
vectors from level ‘ to level ‘þ 1. Finally, Spre

‘ and Spost
‘ define presmoothing and postsmoothing (sometimes referred to as

relaxation) on level ‘. These are local iterations which reduce errors that are oscillatory compared to A‘’s resolution. A W-
cycle is obtained by adding a second c  MGVðÞ invocation immediately after the current one in Fig. 1. A multigrid method
is defined once the A‘; P‘, R‘;Spre

‘ , and Spost
‘ are specified. Within geometric multigrid there is also a mesh G‘ on each level. In

this case, P‘ and R‘ are defined using geometric information (e.g., linear interpolation to transfer information at coarse nodes
to fine nodes) and often the A‘’s are obtained by applying the same discretization technique (and code) to the different G‘.

We consider algebraic multigrid techniques where level transfers and coarse resolution problems are automatically de-
fined based on A1. There are many trade-offs between geometric and algebraic multigrid in terms of robustness and conver-
gence. The primary motivation for algebraic methods, however, has been their relative ease when interfacing with
applications as complex mesh and geometric information is not needed within the solver. The coarse resolution systems
are defined by the projection:
A‘þ1 ¼ R‘A‘P‘:
Additionally, we take
R‘ ¼ PT
‘ :
This is almost always done for symmetric problems though for nonsymmetric systems alternatives may be warranted (see
[41]). We intend to explore other possibilities in a future paper based on the AMG algorithm described in [42]. For this paper,
we take ‘max ¼ 3 and use one-level Schwarz smoothers. In particular,
S�‘ ðA‘; u; bÞ : repeat m times u uþ eMASðb� A‘uÞ
where m > 1 corresponds to multiple sweeps, � indicates either pre or post, and eMAS denotes (11) with inverses replaced by
ILUðkÞ.

Once the P‘ are defined, the entire multigrid cycle is specified. Here, we want P‘ to accurately interpolate constants. Con-
structing P‘ consists of deriving its sparsity pattern and then assigning nonzero values. The sparsity pattern is determined by
decomposing the set of A‘’s nodal blocks into aggregates Ai

‘ such that
[N‘þ1

i¼1

Ai
‘ ¼ 1; :::;N‘f g; Ai

‘ \ A
j
‘ ¼ ;; 1 6 i < j 6 N‘þ1;
where N‘ denotes the number of nodal blocks on level ‘. A nodal block refers to the submatrix which couples all degrees of
freedom defined at the same grid node. In our case, the nodal block dimension is m = 3 corresponding to the electrostatic
potential, electron concentration, and hole concentration unknowns. Each aggregate Ai

‘ on level ‘ gives rise to one node
on level ‘þ 1. Fig. 2 gives an illustration of aggregates on an unstructured grid. Each aggregate normally corresponds to a
set of connected nodes. Typically, one wants aggregates to be approximately the same size and roughly spherical in shape
(at least for isotropic problems). The Ai

‘ are formed based on the connectivity and the strength of the connections between
A‘’s nodal blocks (e.g. see [15,43] for aggregation algorithms). In domain decomposition aggregates are normally large. One
possibility is to have aggregates correspond to subdomains (e.g. Ai

1 ¼ V0
i ). In this work, we use METIS and ParMETIS to gen-

erate aggregates [17,18]. These packages partition graph vertices into disjoint sets of approximately equal size in a way that
essentially minimizes cuts between the disjoint sets. In our case, a graph is constructed corresponding to the nodal block
matrix. One nice aspect is that we can experiment with different coarsening rates by varying the number of partitions re-
quested from METIS (or ParMETIS).

P‘ is populated to correspond to piecewise-constant interpolation over each aggregate for each of the three solution com-
ponents. This is described by first defining an operator Is

‘ which is a row partitioning of the identity, I‘ 2 Rn‘	n‘ where n‘ is the
dimension of A‘. That is, Is

‘ 2 RjA
s
‘ j	n‘ contains a subset of the rows of the identity matrix corresponding to the aggregated

indices in As
‘.

The interpolation is then given by
bP‘ ¼

I1
‘ B‘

I2
‘ B‘

. .
.

IN‘þ1
‘ B‘

0BBBBB@

1CCCCCA; ð12Þ
where B‘ is an n‘ 	m matrix. The jth column contains ones for all rows associated with the jth degree of freedom within each
block corresponding to a grid node. Otherwise, the jth column contains zeros. The matrix B1 represents modes (the
constants) that must be accurately interpolated. It is common to choose B1 to represent rigid body modes (translations in



Fig. 2. Each aggregate corresponds to all nodes in and adjacent to one grey region.

6256 P.T. Lin et al. / Journal of Computational Physics 228 (2009) 6250–6267
each coordinate direction and rotations about each coordinate axis) for elasticity applications. The actual interpolation is
slightly different from (12) in that columns of P‘ are normalized. In particular, a QR factorization is applied to each Is

‘B‘.
The Q matrix is used in place of Is

‘B‘ to define the interpolation and the R matrix is used to define B‘þ1 so that B‘ ¼ P‘B‘þ1.
This prolongator corresponds to nonsmoothed aggregation. For symmetric elliptic problems, it is well known that mul-

tigrid methods using grid transfers based on piecewise constants are not scalable in that the convergence rate deteriorates as
the mesh is refined. While smoothing the grid transfer basis functions can rectify this for symmetric elliptic problems (see
[15,16]), the situation is less clear for a highly nonsymmetric system. Nonsmoothed aggregation has relatively inexpensive
setup costs and has the nice property that when A1 is an M-matrix, then the coarse level matrices inherit this property. This
implies that smoothers whose efficiency relies on M-matrix properties are effective on coarse levels [44]. M-matrices arise
frequently in PDE discretizations and have desirable characteristics in the context of iterative methods. They have the prop-
erty that all diagonal entries are positive, all off-diagonal nonzeros are negative, the matrix is nonsingular, and all matrix
entries in the inverse are greater than or equal to zero [45,46].

In terms of software, fine-level nonoverlapping subdomains are obtained using Chaco [47]. IFPACK provides overlapping
subdomains and incomplete factorizations [48]. Krylov methods are implemented in AztecOO [38,49]. A sparse KLU factor-
ization is used for the coarse direct solver [50]. The multigrid cycles and grid transfers are provided by ML [51]. ML also pro-
vides aggregation routines though METIS and ParMETIS [17,18] that are used in this paper. Access to this software is
obtained via the Trilinos framework [52].

6. Results and discussion

The numerical studies presented in this paper are intended to briefly examine the effect of important algorithmic choices
for the nonsmoothed aggregation multilevel method presented above. Since there are a large number of specific algorithmic
choices and parameter settings that can influence the performance of multilevel-type methods it is beyond the scope of this
study to present an exhaustive investigation of these issues. Instead a set of reasonably representative results are presented
that attempt to illuminate the essential behavior of the techniques. The issues that are considered include the effects of

� choice of the aggregate size,
� choice of V-cycle vs. W-cycle,
� number of multigrid cycles,
� total number of relaxation sweeps (presmoothing and postsmoothing),
� choice of ILU smoother parameters (fill and overlap).

In order to assess the relative performance of the multilevel preconditioner, algorithmic scaling studies for the one-level
and multilevel Schwarz preconditioner were performed for the following three test cases:

� A steady-state drift-diffusion solution for a two-dimensional 2	 1:5 lm NPN bipolar junction transistor (BJT).
� A transient drift-diffusion solution for a 1	 0:5 lm two-dimensional diode.
� And a pseudo one-dimensional steady-state drift-diffusion solution for a 1	 0:125 lm diode that considers the effect of

varying levels of doping.

The results present a comparison of the weak scaling and relative performance of the one-level and multilevel precondi-
tioner for steady-state and transient simulations. Performance of these preconditioners when one or both cores of a dual core
processor on a Cray XT3/4 is also examined. Finally a comparison of these methods on two different compute platforms, a



P.T. Lin et al. / Journal of Computational Physics 228 (2009) 6250–6267 6257
Cray XT3/4 system (ASC Red Storm) and an IBM POWER5-based eServer system (ASC Purple) is also presented. (ASC denotes
the US Department of Energy Advanced Simulation and Computing Program.)

The Cray XT3/4 supercomputer architectures are the result of the Sandia-Cray Red Storm collaborative venture. Each com-
pute node of Red Storm contains 2 GB RAM memory and one AMD dual core 2.4 GHz Opteron processor. Red Storm uses the
Cray SeaStar custom chip for the interconnect and runs the Catamount lightweight kernel on the compute nodes. The semi-
conductor simulation code ASC Charon [53] that implements the drift-diffusion model and the iterative solution methods
was compiled using the PGI 6.2.5 compiler. Unless otherwise stated, the Cray XT3/4 simulations were run using only one
core per compute node. The Lawrence Livermore National Laboratories (LLNL) ASC Purple machine is an IBM POWER eServer
system with p5 575 compute nodes. Each compute node has 30 GB RAM memory and eight 1.9 GHz POWER5 processors. The
compute nodes are connected by the IBM High Performance Switch. Purple runs AIX 5.3 and the AIX compilers were used to
build Charon.

Although the semiconductor device simulator described in this paper handles unstructured meshes, the test cases pre-
sented actually use uniform quadrilateral meshes. Ref. [11] provides an example of the application of this multilevel nons-
moothed aggregation preconditioner to a geometry with tetrahedral meshes for a different set of governing equations, the
incompressible Navier–Stokes equations for fluid flow. High aspect ratio elements for anisotropic problems can have a sig-
nificant detrimental effect on the performance of the multilevel nonsmoothed aggregation preconditioner. Ref. [14] dis-
cusses our semi-coarsening approach to handling anisotropic problems with stretched meshes for the incompressible
Navier–Stokes equations for fluid flow.

6.1. Numerical studies on steady-state solution to the drift-diffusion system

This first set of numerical studies involves the solution of the two-dimensional drift-diffusion equations for a 2	 1:5 lm
silicon NPN BJT (Fig. 3). ‘‘NPN” denotes a transistor with n-type (material with additional negative charge carriers), p-type
(material with excess holes), and n-type material. This geometry has three contacts. The base at the top left corner, the
emitter at the top right corner, and the collector along the entire bottom. Both the emitter and base are 0:1 lm wide.
The steady-state calculation is performed with a voltage bias of 0.3 V: the base and collector are held at ground and the emit-
ter is assigned a voltage of �0.3 V. The initial guess for the drift-diffusion equations is taken as the solution to the nonlinear
Poisson (NLP) problem [54]. Fig. 3(a) shows the signed logarithm of the doping for the device. The signed logarithm slogðxÞ is
defined as slogðxÞ ¼ signðxÞlog10ð1þ jxjÞ. The maximum donor doping is 1019 and the maximum acceptor doping is 1016.
Fig. 3(b) shows the corresponding steady-state electric potential solution.

As mentioned earlier, the fine-level nonoverlapping subdomains are obtained using Chaco as a preprocessing step. Each
subdomain will be assigned to one processor (or one processor core for dual core processors), so naturally the size of the
subdomain is limited by the amount of memory a processor can access. From a practical point of view, the size of the sub-
domain is usually determined by the trade-off between reducing the number of processors required to run a simulation and
reducing the total run time of the simulation. Larger subdomains (larger number of matrix rows) means fewer processors are
required to run a simulation but as each processor has more work, the total run time of the simulation will increase. For the
steady-state BJT test cases that will be discussed, a subdomain with about 30,000 unknowns tends to be a good balance be-
tween the number of processors required and total run time.

6.1.1. Effect of fill and overlap for ILU smoother
We first consider the effect of fill and overlap for an ILU(k) smoother for a three-level preconditioner with one W(1,1)

cycle and coarser levels generated with 85 nodes per aggregate. We use the conventional notation of ‘‘W(number of pres-
moothing sweeps, number of postsmoothing sweeps)” to denote the type of multigrid cycle and the number of relaxation
sweeps. METIS and ParMETIS are used by the aggregation technique to generate the medium and coarse levels respectively.
Fig. 3. (a) Signed logarithm of doping for 2	 1:5 lm 2D NPN BJT; (b) Corresponding steady-state electric potential for 2	 1:5 lm 2D NPN BJT at 0.3 V bias.
(For interpretation to colours in Figs. 3–7, the reader is referred to the web version of this paper.)



6258 P.T. Lin et al. / Journal of Computational Physics 228 (2009) 6250–6267
ILU(k) is the smoother on the fine and medium levels with KLU direct solver on the coarse level. A fine mesh with
3520	 2640 elements was used for the steady-state drift-diffusion solution for the 2	 1:5 lm NPN BJT with 0.3 V bias
and run on 2048 cores (both cores on 1024 nodes) of Red Storm. The coarsening algorithm used 85 nodes per aggregate
to generate the coarser levels. The fine, medium, and coarse level have 27.9 million, 325,000 and 3828 unknowns respec-
tively, so there were approximately 14,000 unknowns per core. Table 2 presents this comparison. The three values for each
entry denote: average Krylov iterations per Newton step, average time to construct the preconditioner (preconditioner set-
up) per Newton step, and average linear solve time per Newton step (does not include time to construct the Jacobian which
was about 2.5 s per Newton step). All runs required seven Newton steps.

In the context of the level of fill, there is an advantage in terms of reduction of iteration count and CPU time for increasing
fill from 0 to 1, followed by a more modest improvement increasing fill from 1 to 2. Further increases quickly reach the point
of diminishing returns. Although further increases in the fill slightly reduce the iteration count and CPU time, the increased
requirement in memory does not justify continued increases in fill. In terms of the choice of level of overlap, there is an
advantage in terms of iteration count and CPU time of increasing overlap from zero to one-level, with a substantially smaller
reduction increasing the levels to two. Further increase in levels of overlap has reached the point of diminishing returns for
CPU time, and the increased memory requirement make continued increases unwarranted. Based on these results a reason-
able choice for fill and overlap is two levels of fill and one-level of overlap. These parameter setting will be used to obtain the
results in the remainder of the paper. Although the choice of fill and overlap does have an effect on solution time, the results
in the next section will demonstrate that the choice of aggregate size has a significantly greater effect.

6.1.2. Effect of aggregate size
The rate at which the coarser level is coarsened can have a large effect on the number of linear solver iterations as well as

linear solution time. Table 3 shows a comparison of aggregate size for a three-level preconditioner using METIS and ParME-
TIS to generate aggregates for the medium and coarse levels respectively. The fine mesh has 111.6 million unknowns. An
ILU(2) with one-level overlap DD smoother is used on the fine and medium levels and KLU solver on the coarse level. Both
presmoothing and postsmoothing (one relaxation sweep) are used in the multigrid cycle. Runs were performed on 4096
nodes (one core per node) of Red Storm. For both the V-cycle and W-cycle, the columns denote: average number of Krylov
iterations per Newton step, time to construct the preconditioner per Newton step, and linear solution time per Newton step
(includes time to construct the preconditioner). Times are given in seconds. The cost to construct the Jacobian is about 7 s for
all the cases (not included in the ‘‘linear solve time” in the table). From the results it is clear that in this aggressively coars-
ened algorithm sufficient coarsening is required to balance the cost of the coarse grid solve (that correlates with the coarse
Table 2
Comparison of fill and overlap for an ILU(k) smoother for a three-level preconditioner with one W(1,1) cycle for the 2D NPN BJT; entries present average values
per Newton step: iterations/preconditioner setup time/linear solve time (times in seconds); fine level with total of 27.9 million unknowns; run on 2048 cores of
Red Storm.

Fill Levels of overlap

0 1 2 3 4

ILU(0) 309/1.39/26.7 277/1.46/24.1 268/1.54/23.5 262/1.66/23.7 261/1.74/23.5
ILU(1) 287/1.46/25.0 246/1.58/21.4 228/1.72/20.2 221/1.81/19.8 217/1.92/19.8
ILU(2) 275/1.54/24.3 233/1.72/21.0 210/1.83/19.0 200/1.97/18.5 190/2.04/17.9
ILU(3) 266/1.66/23.9 221/1.79/20.6 199/1.91/18.5 187/2.08/17.8 179/2.22/17.5
ILU(4) 260/1.74/23.8 214/1.92/20.0 191/2.07/18.2 180/2.20/17.5 170/2.36/17.4

Table 3
Comparison of effect of aggregate size for the three-level preconditioner for the 2D NPN BJT with 111.6 million unknowns on the fine level. Results are for
average values per Newton step and all runs required seven Newton steps. ‘‘Prec time” and ‘‘lin sol time” are the preconditioner setup and linear solve times
respectively (times are given in seconds). 4096 nodes of the Red Storm machine were used (one core per node).

Agg unknowns V(1,1)-cycle W(1,1)-cycle

Medium Coarse Ave iter Prec time Lin sol time Ave iter Prec time Lin sol time

50 2.225M 44,499 317 32.3 98.3 245 32.0 108
60 1.853M 30,885 340 17.5 78.3 265 18.0 79.4
70 1.587M 22,674 353 10.6 66.6 275 11.1 64.5
80 1.388M 17,352 367 6.9 62.3 288 7.2 55.2
85 1.306M 15,363 381 6.3 63.9 295 5.9 52.8
90 1.233M 13,695 386 6.0 64.3 297 5.9 51.7
100 1.108M 11,082 402 4.6 64.7 310 4.4 50.4
125 885.9K 7086 426 3.1 68.7 334 3.0 50.0
150 737.6K 4917 445 2.6 71.6 349 2.6 53.9
175 631.1K 3606 465 2.4 72.2 362 2.5 54.4



P.T. Lin et al. / Journal of Computational Physics 228 (2009) 6250–6267 6259
problem size), and the decreased convergence rate as the coarse problem becomes smaller. For the three-level precondition-
er applied to this particular example, aggregate sizes of about 80–100 and 100–125 appear to provide the minimal solution
times for the Vð1;1Þ and Wð1;1Þ cycles, respectively.

Although a three-level preconditioner was considered here, one could certainly use preconditioners with more levels. The
trade-off between the number of levels and sizes of the coarser levels has a significant impact on the performance of the
preconditioner. Less aggressive coarsening means more levels and larger coarser levels. The larger coarser levels will provide
more accurate corrections to the finer meshes and reduce the number of linear solve iterations. However, the smoothers on
the larger coarser meshes will be more expensive, so even with the reduction in the number of linear solve iterations the CPU
time may increase. More aggressive coarsening means fewer levels and smaller coarser levels. The smaller coarser levels will
provide less accurate corrections to the finer meshes and increase the number of linear solve iterations. However, the smoo-
thers on the smaller coarser meshes will be less expensive, so even with the increase in the number of linear solve iterations,
the CPU time may decrease.

The drift-diffusion equations require a heavyweight smoother such as ILU. Without aggressive coarsening, the next coar-
ser level will be large, and ILU will also be expensive on this level. Because a heavyweight smoother such as ILU is required,
one can use an aggressive coarsening scheme to obtain convergence reasonably quickly. And the coarser level produced from
the aggressive coarsening will be sufficiently smaller than the fine level so that the expense of the ILU for the coarser level is
not significant compared with the fine level. We are pursuing physics-based preconditioning methods which will allow us to
use less expensive smoothers than ILU (for examples of physics-based preconditioners, see [10]). With less expensive smoo-
thers, less aggressive coarsening may be better than aggressive coarsening.

For the largest problems in this study (112 million unknowns), a three-level preconditioner performs well. For signifi-
cantly larger problems, for example on the order of one billion unknowns, a four-level preconditioner would be needed.

6.1.3. Effect of multigrid parameters
Table 4 presents a comparison of performance of the multigrid preconditioner as a function of the various multigrid

parameters. These include the choice of V-cycle vs. W-cycle, the number of presmoothing and postsmoothing (relaxation)
sweeps, and the number of multigrid cycles. All runs used a three-level preconditioner with ILU(2) smoother with one-level
of overlap on fine and medium levels and with a KLU direct solver on the coarse level. The coarsening algorithm used 85
nodes per aggregate to generate the coarser levels. The fine, medium, and coarse level problems have 27.9 million
(3520	 2640 elements), 325,000 and 3828 unknowns, respectively. The runs were performed on 2048 cores (both cores
on 1024 nodes) of the Red Storm machine.

Each entry in the table lists the average number of Krylov iterations per Newton step and the average time to perform the
linear solve per Newton step in seconds (includes time to construct the preconditioner but not the Jacobian). All calculations
required seven Newton steps. Unrestarted GMRES was used for all the calculations. The linear solve tolerance was 10�6 and
the matrix was scaled so that the sum of the absolute values of the nonzeros within each matrix row is one. The ‘‘presmooth
only” portion of the tables presents the effect of increasing the number of presmoothing sweeps while the number of posts-
moothing sweeps remains zero. The ‘‘postsmooth only” portion of the tables presents the effect of increasing the number of
Table 4
Comparison of multigrid parameters: V-cycle vs. W-cycle, smoothing sweeps, and number of multigrid cycles; entries are average values per Newton step:
iterations/linear solve time; 28 million unknowns on fine mesh; 2048 cores on Red Storm.

Multigrid cycles Relaxation sweeps

1 2 3 4 5 6

V-cycle
Presmooth only 1 443/36.9 311/25.9 281/26.0 253/26.0 239/27.4 226/28.8

2 271/26.1 218/25.5 191/26.9 178/29.4 166/31.8 158/34.8

Postsmooth only 1 421/33.8 287/23.2 255/23.1 229/23.4 216/24.4 206/25.9
2 254/24.2 200/23.1 176/24.7 161/26.6 151/29.0 144/31.3

Presmooth and postsmooth 1 290/23.4 232/24.0 206/25.9 187/28.1
2 202/23.4 162/26.9 143/31.1 130/34.9
3 165/25.9 132/30.8 115/36.0 104/40.4
4 141/28.1 112/33.8 97/39.9 88/45.2

W-cycle
Presmooth only 1 330/27.8 246/22.4 224/22.9 202/23.6 193/24.6 183/26.2

2 199/23.0 172/24.4 152/25.5 142/27.8 133/29.8 127/32.0

Postsmooth only 1 312/26.3 228/20.4 205/20.7 184/21.0 173/22.0 163/22.9
2 187/21.6 160/22.7 140/23.5 128/25.2 120/26.7 114/28.7

Presmooth and postsmooth 1 233/21.0 187/21.3 166/23.2 153/25.6
2 163/23.1 131/25.5 116/29.1 107/32.6
3 132/26.0 105/29.4 92/33.5 84/37.8
4 112/28.7 89/32.7 78/37.2 71/42.1



6260 P.T. Lin et al. / Journal of Computational Physics 228 (2009) 6250–6267
postsmoothing sweeps while the number of presmoothing sweeps remains zero. For the ‘‘both presmoothing and postsmoo-
thing” portion of the tables, one relaxation sweep means one presmoothing sweep and one postsmoothing sweep, two relax-
ation sweeps means two presmoothing sweep and two postsmoothing sweeps, etc.

The following trends in Table 4 can be observed:

� If memory is an issue, one can always decrease the Krylov iterations by either increasing the number of multigrid cycles or
increasing the number of relaxation sweeps. For the example considered, this can reduce the average iterations by a factor
of five. However, depending on the problem, this may or may not reduce the CPU time.

� W-cycles are more effective at reducing the number of iterations than V-cycles, and also tends to reduce the amount of
CPU time. Use of a W-cycle will also have a memory advantage as the size of the Krylov subspace can be smaller for an
equal level of linear solve convergence.

� Postsmoothing appears to be more effective than presmoothing in reducing the number of iterations. It is unclear why this
should be the case. Normally, for a given number of smoothing sweeps, the number of iterations should not change too
much depending on how they are distributed between presmoothing and postsmoothing. Postsmoothing costs a little less
than presmoothing (savings of one matrix–vector product).

� For the case with both presmoothing and postsmoothing, while increasing the number of relaxation sweeps reduces the
number of iterations, the amount of CPU time tends to increase. The optimal number of relaxation sweeps depends on
whether the coarse grid correction (smooth modes) or the fine grid relaxation (oscillatory modes) dictate convergence.
If the smooth modes are the bottleneck, then there is little benefit in performing more relaxation.

� In terms of number of multigrid cycles, for unrestarted GMRES, one would not expect it to be advantageous to perform
more than one multigrid cycle. For example, if 100 unrestarted GMRES iterations are required to obtain a certain level
of convergence using one multigrid cycle, then one would expect more than 50 GMRES iterations using two multigrid
cycles per iteration to be required to obtain the same level of convergence. From the table, one can see that increasing
the number of multigrid cycles from one to two per iteration does not reduce the number of iterations by half. However,
whether there is an advantage in CPU time by increasing the number of multigrid cycles from one to two depends on the
number of iterations necessary when one multigrid cycle is being used. When the number of iterations is high, the cost of
the Krylov orthogonalization can be very expensive. This is evident for the case with either one presmoothing only or one
postsmoothing only which requires a large number of iterations. Increasing the number of multigrid cycles from one to
two leads to such a substantial reduction in iterations that it also reduces the CPU time. However, for almost all the other
cases in the table, the reduction in iterations is not sufficient to reduce the CPU time.

6.1.4. Algorithmic scaling study comparing one-level and three-level Schwarz preconditioner for the 2D NPN BJT
This section presents a ‘‘weak scaling study” for the solution of the 2D steady-state drift-diffusion equations where the

problem is scaled up in a manner that approximately keeps the amount of work per processor constant. The test case con-
sidered is the 2	 1:5 lm NPN BJT at 0.3V bias. Each larger mesh is a uniform refinement of the previous mesh. The problem
was scaled up to a mesh of 7040	 5280 elements and 112 million unknowns. The coarsening algorithm uses 85 nodes per
aggregate for the first and second levels of aggregation. The three-level preconditioner used a W(1,1)-cycle with ILU(2) with
one-level of overlap as smoothers for the fine and medium level and KLU direct solver on the coarse level. Table 5 shows the
results run on Red Storm (one core per compute node was used). ‘‘Avg iter/N” is the average Krylov iterations per Newton
step. ‘‘Time” is the time to perform the linear solve per Newton step in seconds (includes time to create the preconditioner
but not construct the Jacobian). The time to construct the Jacobian is about seven seconds per Newton step. Because this time
is about the same for all the calculations and would just translate the curves vertically, it is not included in the values in the
table. All runs required seven Newton steps. Table 5 clearly indicates the reduced growth in the number of Krylov iterations
for the multilevel method as compared to the one-level DD technique. For the one-level DD preconditioner the theoretical
scaling of N1=2 appears evident (N denotes the number of unknowns in the problem). For the multilevel method the reduction
in iteration count growth is also reflected in the reduced CPU time relative to the one-level method. In the case of the large-
scale 112 million unknown problem on 4096 processors the three-level preconditioner performs significantly better than the
Table 5
Weak scaling study comparing one-level and three-level preconditioners for the 2D NPN BJT on Red Storm. ‘‘Time/N” denotes the linear solve time per Newton
step.

Proc Fine grid (elements) Fine grid unk 1-level DD ILU 3-level W(1,1) agg85

Avg iter/N Time/N (s) Medium unk Coarse unk avg iter/N Time/N (s)

4 220	 165 110K 68 3.0 1290 15 36 3.8
16 440	 330 438K 142 7.4 5124 60 66 5.8
64 880	 660 1.75M 287 21 20454 240 111 9.5
256 1760	 1320 6.98M 571 73 81699 960 156 15
1024 3520	 2640 27.9M 1145 278 327K 3843 219 25
4096 7040	 5280 112M 2264 1073 1.31M 15363 295 53



P.T. Lin et al. / Journal of Computational Physics 228 (2009) 6250–6267 6261
one-level preconditioner with about a factor of 20 reduction in CPU time. These results are also presented graphically in
Fig. 4. While the three-level method is clearly not scaling optimally, both in iteration count and CPU time, these results
are encouraging and indicate the value of the multilevel method in reducing the iteration count and CPU time for large-scale
problems. In the context of the CPU time, the growth in time is due to both the time to complete the coarse problem direct
solve as well as the increase in the number of iterations. For example, when increasing the problem size from 28 million to
112 million, the average linear solve time increases from 25 to 53 s. Roughly half this time is due to the large increase in
factorization and solve time of the 15,400 row coarse matrix compared with the 3800 row coarse matrix. To move towards
optimal h independent convergence, currently specialized coarsening techniques that respect the material junction of de-
vices at which large jumps in material properties occur, along with Petrov–Galerkin type operator projections to form the
coarse operator are being pursued. A future study will consider these attempts at improving the convergence rates of the
multilevel method.

Table 6 compares the results between using one core per compute node and using both cores per compute node but with
half the number of compute nodes on Red Storm. The two cores share a 1MB L2 cache on chip. Use of the second core is
handled by the operating system, and from the point of view of the application is handled like a second MPI process. From
the point of view of the application, whether an MPI task needs to communicate with another MPI task that is either running
on the second core or on another node is immaterial and actually the MPI implementation was not shared-memory aware.
The code currently uses a single-level MPI-only approach. We will be exploring the issue of threading with shared memory
cores in the future. The most obvious effect of using both cores is that each MPI process has about 1 GB RAM memory per
process, due to the two cores sharing the 2 GB RAM per compute node (note that after September 2008 the amount of RAM
was doubled). The first column of the table lists the number of cores (which is also the number of MPI tasks). The four col-
umns for each preconditioner are: average Krylov iterations per Newton step, time to perform linear solve in seconds when
Unknowns

Av
er
ag
e
Ite
ra
tio
ns
pe
rN
ew
to
n
St
ep

105 106 107 108
0

500

1500

1000

2000

2500

1-level DD ILU
3-level NSA agg85

Red Storm: single core

16p
4p

4096p64p
256p 1024p

Weak Scaling Study: Average Iterations for 1- and 3-level Preconditioners
2x1.5 micron BJT Steady-State Drift-Diffusion Bias 0.3V

1024p

4096p

N0.50

256p

(a)
Unknowns

Av
er
ag
e
C
PU

Ti
m
e
pe
rN
ew
to
n
St
ep
(P
re
c+
Li
n
So
l)
(s
)

105 106 107 108
0

200

400

600

800

1000

1200

1-level DD ILU
3-level NSA agg85

Red Storm: single core

1024p

16p4p

4096p

256p
64p 1024p 4096p

Weak Scaling Study: Average Time for 1-level and 3-level Preconditioners
2x1.5 micron BJT Steady-State Drift-Diffusion Bias 0.3V

(b)

Fig. 4. (a) Weak scaling study comparing iteration count as a function of problem size for the one-level and three-level precondtioners for the 2D NPN BJT
(b) Comparison of CPU time per Newton step as a function of problem size for the one-level and three-level precondtioners for the 2D NPN BJT.

Table 6
Weak scaling study comparing one-level and three-level preconditioners for the 2D NPN BJT on Red Storm using one or both cores on a compute node. ‘‘Time/
Newt” denotes the linear solve time per Newton step.

Cores Fine grid unk 1-level DD ILU 3-level W(1,1) agg85

Avg Time/Newt (s) Eff (%) Avg Time/Newt (s) Eff (%)

Iter/N Single Dual Iter/N Single Dual

4 110K 68 2.98 3.36 89 36 3.77 4.13 91
16 438K 142 7.36 8.44 87 66 5.80 6.54 89
64 1.75M 287 21.5 24.9 86 111 9.53 10.9 87
256 6.98M 571 73.0 84.1 87 156 14.8 17.6 84
1024 27.9M 1145 278 317 88 219 25.3 29.6 85
4096 112M 2264 1073 1192 90 295 52.8 59.9 88



6262 P.T. Lin et al. / Journal of Computational Physics 228 (2009) 6250–6267
only one out of the two cores is used, time to perform linear solve in seconds when both two cores are used but with half the
number of compute nodes, and the efficiency of using the second core and reducing the number of nodes by half. For exam-
ple, for the row in the table with 4096 cores, ‘‘single” denotes that 4096 compute nodes were used, and only one of out the
two cores per node was used while ‘‘dual” denotes that 2048 computes nodes were used, and both cores per node were used.
‘‘Efficiency” is the quotient of the ‘‘single” time and the ‘‘dual” time and is not to be confused with parallel efficiency. 100%
efficiency means that the dual core time is equal to the single core time (which means that rather than run one calculation
and use only one core per node, one can use half the nodes and run two calculations simultaneously in the same amount of
wall time). A W(1,1) multigrid cycle was used with ILU(2) with one-level of overlap as smoothers for the fine and medium
level and KLU direct solver on the coarse level. Eighty-five nodes per aggregate were used to generate the coarser levels. All
runs required seven Newton steps.

6.2. Numerical studies of a transient two-dimensional diode

The previous studies considered the performance of the multilevel preconditioner for steady-state solutions; the follow-
ing example considers the transient case. The geometry for this test case is a two-dimensional 1	 0:5 lm diode with two
contacts on the top. Each contact is 0:3 lm wide with one in the upper left corner and the other in the upper right corner. A
transient sinusoidal electric potential is applied to the upper left contact with amplitude of 0.5 and period of 1.0 s. Fig. 5
shows the signed logarithm of the doping as well as the electric potential for three different times.

Table 7 shows a comparison of the one-level preconditioner with a three-level preconditioner for this transient drift-dif-
fusion problem. For the three-level preconditioner, METIS and ParMETIS with 60 nodes per aggregate were used to generate
the coarser levels, and one V(1,1) multigrid cycle was used. ILU(2) with one-level of overlap was used as the smoother on the
fine and medium levels with KLU direct solver on the coarse level. A sequence of three meshes was used: 650	 325 ele-
ments, 1300	 650 elements, and 2600	 1300 elements, run on 64, 256, and 1024 cores on Red Storm, respectively (both
cores on a compute node were used). The initial condition is the steady-state drift-diffusion calculation at zero voltage bias.
For the transient simulations, a fixed time step was used for the entire calculation with the final simulation time taken to be
equal to half the period of the sinusoidal boundary condition, i.e. 50, 10, and 5 time steps were used for the
Dt ¼ 0:01;0:05;0:1 cases respectively. The first order backward Euler time integration was used. Columns in Table 7 for each
preconditioner present the average number of Newton steps per time step, average GMRES iterations per Newton step, aver-
age time to perform linear solve (including preconditioner setup) per Newton step, and average total time per Newton step
(includes time for everything during a Newton step). Times are reported in seconds.

In Table 7 it is clear that the multilevel method shows a very significant benefit in iteration count reduction and CPU time
reduction for all mesh resolutions and time steps considered in this study. While for a fixed time step an h independent
convergence rate is not achieved, only a moderate increase is evident. For the largest mesh (10.2 million unknowns), the
three-level preconditioner is about an order of magnitude faster than the one-level preconditioner. For a given resolution
the iteration count is relatively constant as a function of time step size.
Fig. 5. (a) Signed logarithm of doping for the 1	 0:5 lm diode with the two contacts on top; (b) electric potential at t = 0.1 (after the first time step); (c)
Electric potential at t = 0.3; and (d) electric potential at t = 0.8.



Table 7
Comparison of one-level and three-level preconditioners for the transient 2D diode for three different mesh sizes and three different time steps, run on Red
Storm. The four columns for each preconditioner list: average Newton steps per time step, average iterations per Newton step, average linear solve time per
Newton step and average total time per Newton step.

Dt Cores Fine 1-level DD ILU 3-level: ILU/ILU/KLU agg60

unk Newt/Dt Iter/Newt Lin sol time/N Time/Newt Newt/Dt Iter/Newt Lin sol time/N Time/Newt

0.01 64 637K 2.9 251 8.6 12 2.9 89 3.9 7.1
256 2.54M 2.9 488 28 31 2.9 106 5.3 8.5
1024 10.2M 2.9 947 97 101 2.9 154 10 13

0.05 64 637K 4.2 247 8.4 12 4.1 83 3.6 6.7
256 2.54M 4.2 488 28 31 4.1 100 5.0 8.1
1024 10.2M 4.1 957 97 100 4.1 136 8.9 12

0.1 64 637K 4.8 271 9.9 13 4.8 84 3.7 6.8
256 2.54M 4.8 537 33 36 4.8 98 4.9 8.0
1024 10.2M 4.8 1052 115 119 4.8 129 8.4 12

P.T. Lin et al. / Journal of Computational Physics 228 (2009) 6250–6267 6263
6.3. Effect of doping

In this discussion the effect of an increasing material doping level on the performance of the multilevel preconditioner is
briefly presented. In general as the material doping level increases the magnitudes of the dependent variables ðw;n; pÞ and
the gradients of the dependent variables increase for a given device [1,2]. However, due to the structure of the drift-diffusion
system (4)–(6) where the doping, CðxÞ, appears as a source term in the potential equation, it is not readily apparent how this
behavior will affect the conditioning of the associated linearized system that is to be iteratively solved in the Newton iter-
ation. To intuitively illustrate this effect we consider a simplified linearized from of the electron transport Eq. (5) along with
the potential Eq. (4) about the solution ð�w; �n; �pÞ. Assuming a one-dimensional problem with constant coefficients ðk;ln;DnÞ,
carrying out an expansion of the drift term in the electron Eq. (5) by the chain rule, and substituting in r2w from the poten-
tial Eq. (4) into the electron equation, we obtain
Fig. 6.
1	 0:12
@n
@t
þ �un

@n
@x
� Dn

@2n
@x2 þ

@G
@n
j�n;�p �

ln

k2
�p� �nþ C½ �

� �
n ¼ 0
where �un � ln
@�w
@x ¼ �ln

�Ex ¼ �ln

k2

R
½�p� �nþ C�dx is the drift velocity. In this formulation the linearized electron equation is in a

standard transient convection–diffusion-reaction form. As the gradient of �w increases the drift component of the transport
increases relative to diffusion. In addition the reaction source term dependence on C is now readily apparent. Clearly, the
material doping C will directly affect the eigenvalue structure and thereby the condition number of the linear system.
However the nonlinearity and the coupling of the original drift-diffusion system would make a complete analytical under-
standing of this system difficult to obtain. For this reason a numerical study will be presented on the effect of the material
doping for two test cases in order of increasing difficulty. The first is a one-dimensional NP diode with symmetric Gaussian
doping on both sides of the junction, and the second is a two-dimensional NPN BJT. These test cases are used to qualitatively
demonstrate the robustness and sensitivity of the multilevel preconditioner to the magnitude of the material doping. For the
first test case, the position of the single isolated junction is fixed as the magnitude of Gaussian distribution of doping varies.
For the second test case the position of the junctions in the 2D BJT can move as the doping magnitude is varied.

6.3.1. One-dimensional diode
The geometry for this test case is a 1	 0:125 lm NP diode with the junction in the middle. n-doped material is to the left

of the junction and p-doped material is to the right of the junction. The magnitudes and distribution of the n-doped material
and the p-doped material are defined by symmetric Gaussians on both sides of the junction located at x ¼ 0:5 lm, the first
one centered at x ¼ 0:45 lm and the second centered at x ¼ 0:55 lm. This test case provides similar character to the 2D BJT
since the BJT also uses a Gaussian-based doping profile. The diode is a more straightforward study since the junction location
does not move and it is a single 1D isolated junction. Fig. 6 presents the material doping and a steady-state solution for the
electric potential.
(a) Signed logarithm of doping for 1	 0:125 lm diode with symmetric Gaussian doping; and (b) corresponding steady-state electric potential for
5 lm diode for zero-bias case.



Table 8
Effect of doping on the three-level preconditioner for the 1D diode; each entry: average iterations [total Newton steps]/(average linear solve time); run on Red
Storm machine.

Maximum Unknowns on finest mesh/number of cores

Doping 397K/16 1.58M/64 6.31M/256 25.2M/1024

1016 55[2]/7.5 95[2]/13 138[2]/20 198[2]/33
1017 49[3]/6.8 85[2]/12 119[2]/17 166[2]/27
1018 44[3]/6.2 83[3]/11 117[3]/17 145[3]/23
1019 37[4]/5.4 60[3]/8.5 104[3]/15 151[3]/25
1020 – 52[4]/7.5 76[3]/11 113[3]/18

6264 P.T. Lin et al. / Journal of Computational Physics 228 (2009) 6250–6267
Table 8 shows the effect of the variation in the doping on a three-level preconditioner with coarser levels generated by
taking 150 nodes per aggregate. One multigrid V(1,1)-cycle is used with ILU(2) as the smoother on the fine and medium lev-
els and KLU on the coarsest level. The first column is the peak value of the Gaussian. A weak scaling study was performed
with the value of the doping varied from 1016 to 1020 on a sequence of uniformly refined meshes from 1024	 128 (397,000
unknowns) to 8192	 1024 (25.2 million unknowns) with square mesh elements. The steady-state drift-diffusion solution
was calculated for the zero bias case. Calculations were performed on Red Storm using both cores on a compute node.
The linear solver tolerance was 10�6. The values for each entry are: average Krylov iterations per Newton step[total number
of Newton steps]/average linear solve time (including time to construct the preconditioner but not to construct the Jacobian)
per Newton step.

If the mesh size is fixed, as the value of the doping is increased, the linear solve iterations decrease. (For the coarsest mesh
at 1020 maximum doping there is insufficient mesh resolution with the uniform grid, and oscillations in the solution appear
near the junction. For this reason we do not include these results in this preconditioner study.) There is a mild dependence of
iteration count on maximum doping. This seems to be counterintuitive, because one would expect that the problem will be-
come more difficult with larger doping because of the larger gradients. However as the doping is increased, the gradients
become sharper and a smaller region is affected by the strong gradients. Although the number of linear solve iterations is
decreasing, the number of nonlinear solver steps is increasing, which indicates that the problem is becoming more nonlinear
with increased doping. Also, as the doping is increased, a finer mesh is needed to prevent oscillations so the problem be-
comes more expensive to solve. Over the four orders of magnitude increase on maximum doping there is only a factor of
about two variation in the number of Krylov iterations to solution. This indicates a moderate to mild sensitivity and leads
to a fairly robust preconditioner performance as a function of doping level.

6.3.2. Two-dimensional BJT
The second test case will examine the effect of the variation in maximum doping for the 2	 1:5 lm NPN BJT test case

presented earlier. In contrast to the diode just considered, where the location of the junction remained fixed as the doping
was varied, for the BJT the location of the junctions can change as the maximum doping is varied. Table 9 shows the effect of
the variation in the doping on a three-level preconditioner with coarser levels generated by taking 125 nodes per aggregate.
One multigrid V(1,1)-cycle is used with ILU(2) as the smoother on the fine and medium levels and KLU solver on the coarsest
level. The first column is the peak value of the Gaussian under the emitter. The peak value for the Gaussians for the base and
collector are also multiplied by the same factor as the Gaussian under the emitter, i.e. when going from the 1016 to 1017 case,
the peak value for all three Gaussians were multiplied by a factor of 10. The results for a 3520	 2640 element mesh is pre-
sented (27.9M unknowns). 1024 Red Storm cores were used for these runs (both cores on a compute node). With this mesh
resolution the highest magnitude doping case has no oscillations present. The values for each table entry are: average Krylov
iterations per Newton step[total number of Newton steps]/average linear solve time (including the time to construct the pre-
conditioner) per Newton step. Times are reported in seconds.

The trend for this scaling study as maximum doping is increased is more complex than for the 1D diode. Initially as dop-
ing increases the number of linear solve iterations increases until the maximum doping of 1019 case is reached. Then further
Table 9
Effect of doping on the three-level preconditioner for the 2D BJT; each entry: average iterations [total Newton step]/(average linear solve time); run on Red
Storm machine.

Maximum 27.9 million unknowns
Doping 1024 cores

1016 151[3]/19
1017 162[2]/21
1018 233[2]/33
1019 356[2]/59
1020 293[3]/45
1021 219[3]/32
1022 136[4]/20



P.T. Lin et al. / Journal of Computational Physics 228 (2009) 6250–6267 6265
increase in the maximum doping leads to a decrease in the number of linear solve iterations. The number of Newton steps
seems to increase as the problem is becoming more nonlinear.

6.4. Algorithmic scaling study comparing one-level and three-level Schwarz preconditioner for a two-dimensional NPN BJT: Red
Storm vs. Purple

Finally, to demonstrate that the results presented previously are not particularly sensitive to the architecture of the com-
puter, comparisons will be performed between the Red Storm and Purple platforms. Purple has many architectural differ-
ences compared with Red Storm, for example: eight-socket compute nodes vs. single-socket compute nodes, switch vs.
3D mesh interconnect topology and full Unix kernel vs. lightweight kernel on compute nodes.

Table 10 shows a comparison of results between the Red Storm and Purple machines for both a one-level DD ILU precon-
ditioner and a three-level V(1,1) preconditioner for the steady-state drift-diffusion solution of the 2D 2	 1:5 lm NPN BJT
with 0.3V bias. For the three-level preconditioner, the coarser levels were generated by taking 85 nodes per aggregate,
and ILU(2) with one-level of overlap was the smoother on the fine and medium levels with KLU direct solver on the coarsest
level. For the 4096 processor case, the fine, medium, and coarse levels had 112 million, 1.31 million and 15,400 unknowns,
respectively. ‘‘Avg iter/N” is the average number of Krylov iterations per Newton step and ‘‘time” is the average linear solve
time plus Jacobian construction time per Newton step in seconds. The average time to construct the Jacobian for the calcu-
lations in this table was about 7 s for Red Storm and 23–26 s for Purple (about 27,000 unknowns per processor). The com-
parison is made with an equal number of cores per socket and therefore for Red Storm one core per socket (or compute node)
is used and for Purple one core per socket is also used (the Purple sockets are actually dual core but only one core is active to
prevent contention for the L2 and L3 cache). Fig. 7 shows the comparison for a one-level DD ILU preconditioner and the
three-level preconditioner. From the results given in Table 10 for the one-level preconditioner, Red Storm is faster for
Table 10
Weak scaling study comparing one-level and three-level preconditioners for the 2D NPN BJT on the Red Storm and Purple machines. ‘‘Time/N” is the average
linear solve time per Newton step.

Proc Fine grid unk 1-level DD ILU 3-level V(1,1) agg85

Red Storm Purple Red Storm Purple

Avg iter/N Time/N (s) Avg iter/N Time/N (s) Avg iter/N Time/N (s) Avg iter/N Time/N (s)

4 110K 68 9.98 68 26.6 38 10.9 39 26.0
16 438K 142 14.4 143 29.8 75 13.3 74 28.3
64 1.75M 287 28.5 288 40.1 127 17.8 128 33.5
256 6.98M 571 80.1 574 82.3 188 24.7 190 40.1
1024 27.9M 1145 286 1156 265 271 38.4 273 52.9
4096 112M 2264 1081 2263 882 381 71.0 380 86.6

Unknowns

C
PU

Ti
m
e
pe
rN
ew
to
n
St
ep
(s
ec
)

105 106 107 108
0

200

400

600

800

1000

1200

purple: 1-level
purple: 3-level
red storm: 1-level
red storm: 3-level

Weak Scaling Study: Purple and Red Storm for Charon
Preconditioner Comparison for 2x1.5 um BJT Steady-State 0.3V bias

4096p

1024p

256p
64p16p4p

4096p1024p

Fig. 7. Weak scaling study comparing CPU time between Red Storm and Purple for the one-level and three-level preconditioner for the 2D NPN BJT.



6266 P.T. Lin et al. / Journal of Computational Physics 228 (2009) 6250–6267
256 or fewer processors. For the 1024 and 4096 processor cases, Purple is faster. The existence of these two regimes is due to
the slower Jacobian construction time on Purple that is important for smaller problem sizes. For the three-level precondi-
tioner, Red Storm is faster for all the different numbers of processors. If one considers only the time to perform the linear
solve for the one-level preconditioner, Purple is faster than Red Storm (20% faster for the 112 million unknown case). For
the three-level preconditioner, the difference between the two platforms is small, with Purple having the slight edge on
the linear solver time (i.e. not including Jacobian construction time). However when one is comparing total run time on
the two different platforms, the time to construct the Jacobian needs to be considered.

7. Conclusions

This study compared the performance of a one-level and a three-level multilevel preconditioner for accelerating the linear
solution for a Newton–Krylov solution method for the stabilized finite element discretization of the drift-diffusion equations
for modeling semiconductor devices. The results demonstrated that the multilevel preconditioner provides a significant
reduction both in the number of linear solve iterations and in solution time compared with the one-level method. For the
largest problem considered the multilevel method was as much as twenty times faster than the one-level method. Although
the three-level multilevel preconditioner was not strictly scalable, this reduction in CPU time obtained from an established
existing multilevel preconditioning strategy is significant. Studies of the effect in variation of the doping on the performance
of the multilevel preconditioner demonstrated the preconditioner to be reasonably robust to variation in maximum doping.
While the current results for the parallel solution of large-scale semiconductor simulations by this multilevel preconditioner
are encouraging, further investigation to improve the scalability of the method is in progress.

Acknowledgments

The authors would like to thank Richard Drake, Russell Hooper, Jonathan Hu and Eric Phipps for their contributions to this
work. The authors would also like to thank Roger Pawlowski, Joseph Castro, Deborah Fixel, and Eric Keiter for their collab-
orative effort in developing the Charon code. Finally, the first author is very grateful to the SNL Red Storm team for all its
help, especially Suzanne Kelly, Robert Ballance and Michael Davis, and the LLNL Purple team.

References

[1] Kevin M. Kramer, W. Nicholas, G. Hitchon, Semiconductor Devices, A Simulation Approach, Prentice-Hall PTR, 1997.
[2] S.M. Sze, Physics of Semiconductor Devices, second ed., John Wiley & Sons, 1981.
[3] D.L. Scharfetter, H.K. Gummel, Large-signal analysis of a silicon read diode oscillator, IEEE Trans. Electron Dev. 16 (1) (1969) 64–77.
[4] H.K. Gummel, A self-consistent iterative scheme for one-dimensional steady state transistor calculations, IEEE Trans. Electron Dev. ED-11 (1964) 455–

465.
[5] Medici two-dimensional device simulation program user manual, Technical Report, Synopsys, February 2003.
[6] Davinci three-dimensional device simulation program manual type, Technical Report, Synopsys, February 2003.
[7] J.C. Meza, R.S. Tuminaro, A multigrid preconditioner for the semiconductor equations, SIAM J. Sci. Comput. 17 (1) (1996) 118–132.
[8] T. Clees, AMG strategies for PDE Systems with applications in industrial semiconductor simulation, Ph.D. Thesis, Universität zu Köln, 2005.
[9] J. Molenaar, P.W. Hemker, A multigrid approach for the solution of the 2D semiconductor equations, Impact Comput. Sci. Eng. 2 (1990) 219–243.

[10] D.A. Knoll, D.E. Keyes, Jacobian-free Newton–Krylov methods: a survey of approaches and applications, J. Comput. Phys. 193 (2004) 357–397.
[11] P.T. Lin, M. Sala, J.N. Shadid, R.S. Tuminaro, Performance of fully-coupled algebraic multilevel domain decomposition preconditioners for

incompressible flow and transport, Int. J. Numer. Meth. Eng. 67 (2) (2006) 208–225.
[12] M. Sala, J.N. Shadid, R.S. Tuminaro, An improved convergence bound for aggregation-based domain decomposition preconditioners, SIAM J. Matrix

Anal. 27 (3) (2006) 744–756.
[13] J.N. Shadid, R.S. Tuminaro, K.D. Devine, G.L. Hennigan, P.T. Lin, Performance of fully-coupled domain decomposition preconditioners for finite element

transport/reaction simulations, J. Comput. Phys. 205 (1) (2005) 24–47.
[14] M. Sala, P. Lin, R. Tuminaro, J. Shadid, Algebraic multilevel preconditioners for nonsymmetric PDEs on stretched grids, in: O. Widlund, D. Keyes (Eds.),

Domain Decomposition Methods in Science and Engineering XVI, Lecture Notes in Computational Science and Engineering, vol. 55, Springer-Verlag,
2007, pp. 741–748.

[15] P. Vaněk, J. Mandel, M. Brezina, Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems, Computing 56 (1996) 179–
196.

[16] P. Vaněk, M. Brezina, J. Mandel, Convergence of algebraic multigrid based on smoothed aggregation, Numer. Math. 88 (2001) 559–579.
[17] G. Karypis, V. Kumar, Multilevel k-way partitioning scheme for irregular graphs, Technical Report 95-064, Department of Computer Science, University

of Minnesota, 1995.
[18] G. Karypis, V. Kumar, ParMETIS: parallel graph partitioning and sparse matrix ordering library, Technical Report 97-060, Department of Computer

Science, University of Minnesota, 1997.
[19] P.M. De Zeeuw, Nonlinear multigrid applied to a one-dimensional stationary semiconductor model, SIAM J. Sci. Stat. Comput. 13 (2) (1992) 512–530.
[20] R.E. Bank, H.D. Mittelmann, Continuation and multi-grid for nonlinear elliptic systems, in: W. Hackbusch, U. Trottenberg (Eds.), Multigrid Methods II

Proceedings of the 2nd European Conference on Multigrid Methods, Lecture Notes in Mathematics, vol. 2, Springer-Verlag, 1986, pp. 23–37.
[21] T.J.R. Hughes, A. Brooks, A theoretical framework for Petrov–Galerkin methods with discontinuous weighting functions: application to the streamline-

upwind procedure, in: R.H. Gallagher et al. (Eds.), Finite Elements in Fluids, vol. 4, J. Willey & Sons, 1982. pp. 47–65.
[22] T.J.R. Hughes, M. Mallet, A. Mizukami, A new finite element formulation for computational fluid dynamics: II. Beyond SUPG, Comput. Meth. Appl. Mech.

Eng. 54 (1986) 341–355.
[23] F. Shakib, Finite element analysis of the compressible Euler and Navier–Stokes equations, Ph.D. Thesis, Division of Applied Mathematics, Stanford

University, 1989.
[24] M. Sharma, G.F. Carey, Semiconductor device simulation using adaptive refinement and flux upwinding, IEEE Trans. Computer-Aided Des. 8 (6) (1989)

590–598.
[25] G.F. Carey, A.L. Pardhanani, S.W. Bova, Advanced numerical methods and software approaches for semiconductor device simulation, Technical Report

SAND2000-0763J, Sandia National Laboratories, 2000.



P.T. Lin et al. / Journal of Computational Physics 228 (2009) 6250–6267 6267
[26] R. Codina, Comparison of some finite element methods for solving the diffusion–convection-reaction equations, Comput. Meth. Appl. Mech. Eng. 156
(1998) 185–210.

[27] J. Donea, A. Huerta, Finite Element Methods for Flow Problems, John Wiley & Sons, Ltd., 2003.
[28] J.N. Shadid, G.L. Hennigan, P.T. Lin, R.J. Hoekstra, Performance of stabilized finite element methods for solution of the drift-diffusion equations of

semiconductor modeling, in preparation.
[29] T.J.R. Hughes, M. Mallet, A new finite element formulation for computational fluid dynamics: III.The generalized streamline operator for

multidimensional advective–diffusive systems, Comput. Meth. Appl. Mech. Eng. 58 (1986) 305–328.
[30] P.N. Brown, Y. Saad, Hybrid Krylov methods for nonlinear systems of equations, SIAM J. Sci. Stat. Comput. 11 (3) (1990) 450–481.
[31] J.N. Shadid, A fully-coupled Newton–Krylov solution method for parallel unstructured finite element fluid flow, heat and mass transfer simulations, Int.

J. CFD 12 (1999) 199–211.
[32] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 2003.
[33] A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, PA, USA, 1987.
[34] S.C. Eisenstat, H.F. Walker, Globally convergent inexact Newton methods, SIAM J. Optim. 4 (1994) 393–422.
[35] B. Smith, P. Bjorstad, W. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University

Press, 1996.
[36] A. Quarteroni, A. Valli, Decomposition Methods for Partial Differential Equations, Oxford University Press, 1999.
[37] X.-C. Cai, M. Sarkis, A restricted additive Schwarz preconditioner for general sparse linear systems, SIAM J. Sci. Comput. 21 (1999) 792–797.
[38] R.S. Tuminaro, M. Heroux, S.A. Hutchinson, J.N. Shadid, Aztec user’s guide – version 2.1, Technical Report SAND99-8801J, Sandia National Laboratories,

Albuquerque NM, 87185, Nov. 1999.
[39] M. Dryja, O.B. Widlund, Towards a unified theory of domain decomposition algorithms for elliptic problems, in: T.F. Chan, R. Glowinski, J.Périaux, O.

Widlund (Eds.), Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1990, pp.
3–21.

[40] J. Xu, Iterative methods by space decomposition and subspace correction: a unifying approach, SIAM Rev. 34 (4) (1992) 581–613.
[41] J. Dendy, Black box multigrid for nonsymmetric problems, Appl. Math. Comput. 13 (1983) 261–283.
[42] M. Sala, R.S. Tuminaro, A new Petrov–Galerkin smoothed aggregation preconditioner for nonsymmetric linear systems, SIAM J. Sci. Stat. 31 (2008) 143–

166.
[43] R. Tuminaro, C. Tong, Parallel smoothed aggregation multigrid: aggregation strategies on massively parallel machines, in: J. Donnelley (Ed.),

SuperComputing 2000 Proceedings, 2000.
[44] H.H. Kim, J.C. Xu, L. Zikatanov, A multigrid method based on graph matching for convection–diffusion equations, Numer. Linear Algebra Appl. 10 (1–2)

(2003) 181–195.
[45] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, 1994.
[46] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Hills, NJ, 1962.
[47] B. Hendrickson, R. Leland, The Chaco user’s guide-version 1.0, Technical Report SAND93-2339, Sandia National Laboratories, Albuquerque NM, 87185,

1993.
[48] M. Sala, M. Heroux, Robust algebraic preconditioners with IFPACK 3.0, Technical Report SAND2005-0662, Sandia National Laboratories, 2005.
[49] M. Heroux, AztecOO user guide, Technical Report SAND2007-3796, Sandia National Laboratories, 2007.
[50] T.A. Davis, Direct Methods for Sparse Linear Systems, SIAM, 2006.
[51] M.W. Gee, C.M. Siefert, J.J. Hu, R.S. Tuminaro, M.G. Sala, ML 5.0 smoothed aggregation user’s guide, Technical Report SAND2006-2649, Sandia National

Laboratories, 2006.
[52] M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long, R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J.

Willenbring, A. Williams, An overview of trilinos, Technical Report SAND2003-2927, Sandia National Laboratories, 2003.
[53] G.L. Hennigan, R.J. Hoekstra, J.P. Castro, D.A. Fixel, J.N. Shadid, Simulation of neutron radiation damage in silicon semiconductor devices, Technical

Report SAND2007-7157, Sandia National Laboratories, 2007.
[54] I.D. Mayergoyz, Solution of the nonlinear Poisson equation of semiconductor device theory, J. Appl. Phys 59 (1) (1986) 195–199.


	Performance of a parallel algebraic multilevel preconditioner for stabilized finite element semiconductor device modeling
	Introduction
	Governing equations for semiconductor device modeling
	Stabilized finite element discretization
	Electron and hole stabilization parameters

	Preconditioned Newton–Krylov method
	Domain decomposition preconditioners
	One-level additive schwarz methods
	Multilevel schwarz

	Results and discussion
	Numerical studies on steady-state solution to the drift-diffusion system
	Effect of fill and overlap for ILU smoother
	Effect of aggregate size
	Effect of multigrid parameters
	Algorithmic scaling study comparing one-level and three-level Schwarz preconditioner for the 2D NPN BJT

	Numerical studies of a transient two-dimensional diode
	Effect of doping
	One-dimensional diode
	Two-dimensional BJT

	Algorithmic scaling study comparing one-level and three-level Schwarz preconditioner for a two-dimensional NPN BJT: Red Storm vs. Purple

	Conclusions
	Acknowledgments
	References


